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Pattern formation described by differential-difference equations with diffusion is investigated. It is shown
that an arbitrarily small diffusion induces space-time turbulence just at the instability threshold of the homo-
geneous stationary solution. We prove this property by deriving a complex Ginzburg-Landau equation on the
basis of normal form analysis. Well above threshold, such turbulent structures give way to synchronized states
ordered by spirals and targets. This secondary instability can be understood with an asymptotic method
representing the system as a cellular automaton network.
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I. INTRODUCTION

Various structures despite their different natures often
demonstrate similar features. That implies the existence of
some universal laws which are still far from being com-
pletely understood. To this end, investigations of a number of
basic models have aroused permanent interest, for instance,
two-component reaction-diffusion equations or the complex
Ginzburg-Landau equation used commonly to simulate such
spectacular patterns as spirals, targets, and spatiotemporal
chaos in both living and artificial media[1,2]. In most cases,
except for models of front propagation, systems of no fewer
than two variables are necessary because they can provide
excitable or oscillatory behavior of local subsystems so that
the physical background of the process is a competition be-
tween two players(activator-inhibitor, predator-prey, phase-
amplitude, etc.) having different relaxation rates and diffu-
sion scales.

There is also another mechanism that can support oscilla-
tions in a single-component system. We refer here to the
mathematical model proposed by Hutchinson[3] many years
ago,

Ṅ = Mf1 − Nst − tdgN, s1.1d

which includes a time-delayed term in order to describe the
feedback regulation of a biological population living in a
homogeneous environment. HereNstd.0 is the normalized
number of the population,M .0 is the Malthusian coeffi-
cient of linear growth, andt.0 means the average age of
the species reproducers. In the limitt=0, Eq. (1.1) tells us
about one of the simplest quadratic nonlinear laws—the lo-
gistic law—of growth with a final stationary state of the

population. It is a delay that induces self-oscillations in the
absence of interaction with another species or component
[4]. Moreover, by varying the only parameterMt one can
further observe the transition to oscillations of relaxational
type [5] in an infinite-dimensional phase space of this func-
tional equation.

Equation(1.1) can be exploited for systems with restored
resources; hence it is indeed of a general meaning. Related
problems arise, in particular, in the dynamics of nuclear re-
actors[6] or in the dynamics of loss-modulated lasers with
optoelectronic feedback[7]. The oscillatory property of the
delayed system can also be used to construct neuron models
[8]. In a similar way, the delay due to the finite speed of
amplifiers has recently been incorporated into a model of an
electronic neural network[9].

In order to describe the dynamics of a mobile population
living in the areaVPR2, Eq. (1.1) has been generalized to
the parabolic boundary value problem[6,10]

] N

] t
= DDN + Mf1 − aNst − tdgN,U ] N

] n
U

xPG

= 0, s1.2d

where D is the Laplacian,n is the normal to the smooth
boundaryG of the areaVPR2, and D.0 is the mobility
coefficient. The Malthusian factorM =Msxd.0 and the in-
homogeneous resistance of the environmenta=asxd can be
space dependent; if not, they can be setM =1,a=1 without
loss of generality. More complicated models of several equa-
tions for competing stage-structured population dynamics are
discussed in[11].

While the pointlike system(1.1) or the diffusion system
(1.2) with t=0 demonstrates rather regular or stationary dy-
namics, the joint efforts of diffusion and delay in Eq.(1.2)
can induce various nonstationary patterns, including spa-
tiotemporal chaos, target centers, and spiral waves. To our
knowledge, such a rich variety of structures in single-species
systems has not been yet demonstrated; see, for example, the
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reviews[1,2,12,13]. This phenomenon seems to be close to
that in an optical resonator with passive Kerr-like nonlinear
media where two-dimensional feedback provides a spatial
transformation of patterns and, as a consequence, nonlocal
coupling between distant points[14]. But the differences are
essential[15]: (i) contrary to the spatial shift, the time delay
introduces extra(infinite) numbers of degrees of freedom and
(ii ) quadratic nonlinearity leads to relaxation oscillations,
which result in more possibilities for the system(1.2). We
also note several schemes for time-delayed feedback control
of spatial patterns recently proposed and aimed at stabilizing
or manipulating patterns originally produced by systems
without feedback[16,17]. However, in the case of local feed-
back one can suppose additional complexity induced by the
delayed coupling for every spatial element.

Thus pattern formation due to delay and diffusion is cer-
tainly of importance. It is hence reasonable to consider sys-
tematically such a mechanism in the framework of the fun-
damental Eq.(1.2) distributed in time and in space and
containing only two parametersD andt.

The paper is organized as follows. In the first part, we use
bifurcation analysis and derive the normal form in the neigh-
borhood of the instability threshold of the homogeneous sta-
tionary solutionN=a−1 of Eq. (1.2). It appears to be the
complex Ginzburg-Landau equation with parameters always
satisfying Benjamin-Feir instability. That explains the exis-
tence of “diffusion chaos” already at threshold. This behavior
is replaced by a regime of another sort, namely, spiral waves,
when the time delay increases further. These patterns, how-
ever, cannot be described completely in the framework of the
local analysis. In this case we develop a special asymptotic
theory. Instead of boundary value problem systems, we study
a set of coupled difference-differential equations which are
obtained from Eq.(1.2) as a result of the standard approxi-
mation of the Laplacian. The main assumption is that the
delayt is sufficiently large and the diffusion parameterD is
sufficiently small(or the areaV is sufficiently wide, which is
biologically natural). These conditions can provide intensive
oscillations of spiking type. We first approximate analytically
such a solution to the equation without diffusion. Second, we
consider the dynamical regimes of two Hutchinson oscilla-
tors with diffusionlike coupling. In-phase or out-of-phase os-
cillations are found depending on the diffusion value, and
analytical approximations are obtained of antiphase regimes.
Then the dynamics of a one-dimensional open chain as well
as that of a circuit of a few coupled oscillators will be studied
and the existence of wavelike regimes will be demonstrated.
These results have an independent meaning in the context of
intensively studied problems on synchronization of relax-
ation oscillations [18]. Finally, we consider a two-
dimensional cellular network for which we formulate a
simple algorithm for the action on the base of the obtained
features of coupled oscillators. This way of investigation,
started by Wiener and Rosenblueth[19], enables us to expose
the existence of various attractors similar to target centers,
spiral waves, etc.

II. NORMAL FORM ANALYSIS

First we consider a one-dimensional homogeneous envi-
ronment. Taking without loss of generality the rateM =1,a

=1 and fixing the size of the systemL, we can write Eq.(1.2)
as

] N

] t
= Nsx,td − Nsx,tdNsx,t − td + d]xx

2 Nsx,td,

s2.1d

U ] N

] x
U

x=0
= 0, U ] N

] x
U

x=2p

= 0,

whered=L−2D is the diffusion coefficient.
In the pointlike system without diffusion,d=0, a stable

limit cycle is created in the vicinity of a certain critical value
for the time delay. This result has been obtained by several
methods[4] including a normal form analysis. Below we
expand the method to the case of the spatially distributed
system(2.1) and derive the amplitude equation that predicts
one of the well-known ways to obtain complex behavior
whend→0. Note that the diffusion coefficientd=L−2D be-
comes smaller and smaller when the spatial size of the sys-
tem increases, so the situation is typical. An analogous situ-
ation can occur in systems with a large delay, for which an
amplitude equation of a similar universal type has been ob-
tained recently in[20].

The system(2.1) has two stationary homogeneous solu-
tions Nsx,td=Nsj,

Ns1 = 0, Ns2 = 1. s2.2d

In order to verify their stability we write the equation for a
small deviation from the stationary statezsx,td=Nsx,td−Nsj,
neglect the nonlinear term, and seek for the solution in the
form z=expsltdscoskxd. That results in the characteristic
equation

l = 1 −Nsj − Nsje
−lt − dk2, s2.3d

from which we conclude that the homogeneous solution
Ns1=0 is always unstable for any perturbation of the wave
numberk,d−1/2, while the stateNs2=1 can be stable or un-
dergoes a Hopf bifurcation at the critical value for the time
delay. In the last case, substituting the characteristic roots in
the formlk= iv0+dl1k into Eq.(2.3), we find that oscillatory
instability with the frequencyv0=1 occurs for the homoge-
neous modek=0 at the time delayt0=p /2, and other modes
become unstable att.t0. However, if d→0 then an(as-
ymptotically) infinite number of spatial modes around the
homogeneous one occur in the same critical conditions in a
small neighborhood of the critical parameter,

t = t0 + dt1. s2.4d

In this vicinity the modes are excited simultaneously with the
same(asymptotic) frequencyv0. Following the normal form
theory we represent the solution in the form

zsx,td = d1/2jeiv0t + do
j=0

2

u2je
ij v0t + d3/2o

j=0

2

u3je
ij v0t + ¯ + c.c.

s2.5d

where the amplitudesj ,ukj are functions of the slow time
variable dt and of the spatial variablex. In addition, each
function should obey the corresponding boundary conditions.
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The amplitude of the main term of this series is determined
by the following order parameter equation:

]sj = t1S1 − i
p

2
Dj + s1 + ic1d]xx

2 j − juju2s1 + ic2d,

s2.6d

U ] j

] x
U

x=0
= 0, U ] j

] x
U

x=2p

= 0,

where

c1 = −
p

2
, c2 =

3 + p/2

3p/2 − 1
. s2.7d

Details of the derivation are given in Appendix A.
Equation(2.6) is the complex Ginzburg-Landau equation

(CGLE), the universal equation without delay and without
any small parameter. Instead, the complex coefficients sup-
port both amplitude and phase diffusion. Ift1.0, i.e., the
time delay exceeds the threshold valuep /2, Eq.(2.6) has the
homogeneous periodic solutionj=j0expsiv1dtd where

j0
2 =

5t1

3p/2 − 1
, v1 = −

t1p/2 + j0
2s3 + p/2d/5

1 + p/22 .

The corresponding homogeneous solution of the original
equation is

Nsx,td = 1 + 2d1/2j0 cosst + dv1td + Osdd. s2.8d

This periodic state can be unstable as the coefficients satisfy
the well-known Benjamin-Feir condition[21]

1 + c1c2 , 0

which is satisfied for the coefficients given in Eq.(2.7).
Hence we conclude that there is a possibility of diffusion
chaos already at onset.

The results are the same for a two-dimensional space re-
gion with corresponding boundary conditions. Figures
1(a)–1(f) represent numerical simulations of both Eqs.(2.1)
and(2.6). For both systems we used a FTCS method for time
and space discretization[22]. A mesh of 2563256 points in
space gives a reasonable resolution and accuracy. The code
was implemented on an alpha workstation. To compute the
delay term in the original system, all former time steps up to
the delay time have to be stored in an array, making the code
rather memory consuming. This is of course not necessary in
the case of the Ginzburg-Landau equation.

For both (and also for all following) series, the initial
pattern was constructed of two spatially separated squares
where the values of the fields were chosen randomly with an
equal distribution between ±0.05. For the rest of the layer we
put j (or N) to zero.

Both series clearly show the occurrence of diffusion chaos
or phase turbulence. The initial seeds invade the regions
without excitation and finally fill the whole domain. Pattern
formation stays time dependent and chaotic in the long time
limit.

When the time delay is increased further, diffusion chaos
is replaced by a regime of another sort, namely, spiral waves
[Figs. 2(a)–2(c)]. In the original system, turning spirals are

formed rather soon and also fill the whole layer at the end. If
two fronts meet, they annihilate each other, a behavior well
known from excitable media(see, e.g.,[12]).

However, the spatiotemporal behavior of these patterns
cannot be described fully adequately in the framework of a
local analysis. Actually, to trace the evolution of the system
further away from threshold one can continue the procedure
and obtain higher order nonlinear terms. Then the normal
partial differential equation takes the form

] j

] s
= t1S1 − i

p

2
Dj + s1 + ic1dDj − juju2s1 + ic2d + djuju4sc3

+ ic4d, s2.9d

where

c3 =
3s7p − 8d
10s3p − 2d

, c4 =
3s2p + 7d
5s3p − 2d

.

The real part of the coefficient of the quintic term is positive,
c3.0. This means that when the amplitude of the solution
becomes relatively large the system leaves the local vicinity
of the homogeneous solution and diverges. Nevertheless,
bounded solutions of Eq.(2.9) can be found for not too large
t1. Figures 2(d)–2(f) show frames where the suppression of
diffusion chaos and the tendency to form traveling waves
and spirals can be seen. This picture is supported by the fact
that the Benjamin-Feir unstable region is bounded from
above in thek-t1 plane if complex quintic terms are present
[23]. To demonstrate this we make for Eq.(2.9) the ansatz

jsx,y,td = fAk + asx,tdgexphifkx+ vskdt + Fsx,y,tdgj
s2.10d

with Ak being the smaller(stable) real root of

FIG. 1. Numerical solution of(a)–(c) the two-dimensional(2D)
Hutchinson equation with diffusion(2.1) and (d)–(f) of the cubic
2D Ginzburg-Landau Eq.(2.6) on a quadratic domain. The initially
randomly excited squares expand and finally fill the whole layer.
The Benjamin-Feir condition is satisfied and spatiotemporal chaotic
patterns are found in the long time limit.t=1.1 t0. Here and in all
following boxes the side length is scaled to 1, and the small expan-
sion parameter isd=6310−6.
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t1 − k2 − Ak
2 + dc3Ak

4 = 0

and

vskd = − t1p/2 − c1k
2 − c2Ak

2 + dc4Ak
4.

Note thata=0,F=const is an exact solution of Eq.(2.9) and
describes traveling waves. To test their stability, one may
perform the usual linear analysis. After adiabatic elimination
of the amplitude[21], one arrives at a linear phase diffusion
equation having the form

]tF = vx]xF + Di]xx
2 F + D']yy

2 F s2.11d

with the diffusion coefficients

D' = 1 +
− c2 + 2dc4Ak

2

− 1 + 2dc3Ak
2 c1, s2.12d

Di = D' +
2k2

− Ak
2 + 2dc3Ak

4 . s2.13d

Both coefficients are negative at threshold(Benjamin-Feir
instability) but may change their sign for larger values oft1,
allowing for a region of stable traveling waves or homoge-

neous oscillations(Fig. 3). It is in this region where spirals
can be formed.

Finally, Figs. 2(g)–2(j) presents solutions of the CGLE
including a seventh order term of the simple form

− uju6j,

which is here not systematically derived from the basic equa-
tion, but only used to assure global stability. Now the region
of larger t1 can be explored and spirals are clearly the pre-
ferred structure.

To get a more accurate insight into the mechanisms of
spiral dominated structures, we now leave the local approxi-
mation in normal forms and wish to present another way to
understand pattern formation far away from threshold in the
next part.

III. DYNAMICS OF COUPLED HUTCHINSON EQUATIONS
WITH A LONG TIME DELAY

Here we turn to the systems of coupled differential-
difference equations

Ṅ = DDKN + tNf1 − Nst − 1dg, s3.1d

whereDK is the difference analogy of the Laplacian, taking
into account the boundary conditions and geometry of the
region, the current time variable is normalized so that the
time delay is equal to unity, andNstdPRK is a vector whose
elements mean “the population number” in the correspond-
ing subcell of the areaV. The system(3.1) may be also
referred to as a model describing the dynamics of the popu-
lation living in k local areas, and the operatorDDK describes

FIG. 2. (a)–(c) Numerical solution of the 2D Hutchinson equa-
tion with diffusion (2.1) well above threshold,t=1.5 t0. Now spi-
rals are formed early and persist in time. The development strongly
resembles that known from excitable media.(d)–(f) Numerical so-
lution of the quintic Ginzburg-Landau Eq.(2.9), but above thresh-
old, t1=0.41. The diffusion chaos is suppressed and more regular
structures evolve as a secondary instability, already showing the
tendency to form spirals.(g)–(i) Numerical solution of the seventh
order Ginzburg-Landau equation with global stability. Spirals and
excitable behavior are found well above threshold fort1=0.8.

FIG. 3. Phase diagram found by the method of phase equations
applied to the quintic CGLE. Bounded solutions exist between the
two bold lines. Thin solid line,D'=0; thin dashed line,Di=0 In the
small region between the upper bold and the dashed line nonchaotic
solutions are possible.
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the exchange of specimens between neighboring areas in the
absence of migrations within the areas. The constantt char-
acterizes the time delay, which is assumed to be sufficiently
large,t@1, while the coupling coefficientD!1. These con-
ditions are not very hard because numerical simulation
shows thatt,2t0<3 is already long enough to induce
strongly nonlinear oscillations.

Without coupling sD=0d each equation of the system
(3.1) has a slow-oscillating periodic solutionN0std. We find
such a solution to be stable in a system with the coupling
coefficientD exceeding the critical oneDc=exps−td. That is
why it is convenient to consider the small diffusionlike co-
efficient in the form

D = e−ts, s . 0;

then the critical coefficient of diffusion corresponds to the
critical sc=1.

Being simpler than Eq.(1.2), the model(3.1) has never-
theless a rich set of attractors. Below we shall obtain analyti-
cal approximations for the most important solutions from
this set, namely, the slowly oscillating solution characteriz-
ing synchronous oscillations as well as the antiphase solution
for two coupled oscillators. We then numerically demon-
strate solutions with shifted phases in one-dimensional open
and closed chains and in a two-dimensional region. The so-
lutions can be interpreted as wavelike patterns moving with a
velocity dependent on the coupling coefficient. When the
diffusion coefficient decreases the oscillations become out of
phase and the patterns get more and more complicated.

Our conclusions, however, have to be considered only as
tendencies for the original parabolic Eq.(1.2). It turns out to
be impossible to expand correctly the results obtained to the
boundary value problem(1.2) because increasing the dimen-
sion K of the system(3.1) requires increasing the parameter
t. Nevertheless, the observed structures correlate quite well
with those found for the original model.

A. Solitary Hutchinson oscillator

A single Hutchinson oscillator with a large time delay is
determined by

Ṅ = tNf1 − Nst − 1dg, t @ 1. s3.2d

From the local analysis we know that there is a stable limit
cycle if t.p /2. This cycle is close to a harmonic one at its
creation. Far away from threshold the harmonic oscillations
are transformed into sharp spikes with large-period pulses.
The corresponding periodic solution is called slowly oscillat-
ing as the intervals between neighboring local maxima or
minima are larger than the time delay.

In order to get such a solution analytically we consider the
phase space of Eq.(3.2), which is the Banach spaceCf−1,0g of
continuous functions, i.e., the values of the functions from
Cf−1,0g should be given as initial conditions. In this space, we
shall distinguish a(fairly wide) setS and construct uniform
asymptotic approximations of the solutions with initial con-
ditions from this set. One way for the asymptotic buildup of
solutions of the spiking type is opened by peculiarities of

delayed systems, which allow us to integrate the equation
step by step using the large parametert. It is possible to
show that after a certain time these solutions again fall
within S. Thus, the operator of the shifting along the trajec-
tories, which makes a function fromS correspond to a func-
tion also fromS, is naturally determined. To a fixed point of
the operator there corresponds a periodic solution of Eq.
(3.2) of the same stability.

Let us chooset=0 at the moment of the onset of a spike
and determine the setS0 of initial functions fssd ,
sP f−1,0g, in the form

S0:fssd = etsf1 + gssdg; ugu ø t−2, gs0d = 0. s3.3d

Details of the further procedure are given in Appendix B.
Finally, we find that Eq.(3.2) has an orbitally stable periodic
solutionN0std with the period

T0 =
et

t
f1 + os1dg. s3.4d

The maxima and minima of the spikes

Nmax= et−1f1 + os1dg,

Nmin = exph− etf1 + os1dgj

follow each other in a timetmin− tmax=1+os1d, which deter-
mines the width of the spike. The comparison between nu-
merical and analytical solutions given in Fig. 4(a) confirms

FIG. 4. (a) Numerical solution of Eq.(3.2) (bottom) and its
analytical approximation(top) by Eqs.(B2), (B3), (B7). t=3. (b)
Synchronous and(c) antiphase solutions of Eqs.(3.5) with t=4 and
s=0.5 (b), 2.7 (c). The vertical axis denotes the number of the
populationsN,N0P f0,10g ,N1,N2P f0,30gd.
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that the approximation obtained is already quite satisfactory
for t=3, i.e., twice above the threshold.

Summarizing, after generation of a spike of large ampli-
tude,et−1, the system recovers its properties during the long
period,et /t, which is caused by the fact that the population
decreases to a superexponentially small value. From the bio-
logical point of view, such a dramatic scenario can result in
disappearance of the population. But it can easily be pre-
vented by a small additional influence like migration from
neighboring areas. We consider this mechanism in the next
section.

B. Two coupled Hutchinson oscillators

The dynamics of two coupled Hutchinson oscillators is
governed by the system

Ṅ1 = tN1f1 − N1st − 1dg + DsN2 − N1d,
s3.5d

Ṅ2 = tN2f1 − N2st − 1dg + DsN1 − N2d,

where the coupling termDsN2−N1d is the difference analogy
of the diffusion operator in the original partial differential
equation,D=e−ts ,s.0.

If the coupling coefficient is relatively strong, then the
system(3.5) demonstratesin-phaseoscillations as shown in
Fig. 4(b). In this case each equation of the system(3.5) has
the slowly oscillating periodic solutionN0std given in the
previous section. The synchronous solution becomes un-
stable when the coupling becomes weaker than the critical
one,s.sc. Oscillations are still intensive but they arean-
tiphase and their period decreases essentially as Fig. 4(c)
demonstrates.

In order to prove analytically the existence of such an-
tiphase regimes and estimate the critical valuesc we con-
sider a sufficiently wide set of initial conditions, namely,
N1ssd=wssdPS1,N2ssd=cssdPS2, where

S1 = hwssd P Cf−1,0g:0 , wssd ø s1 + cdexp ts, ws0d = 1j,

s3.6d
S2 = hcssd P Cf−1,0g:c1exp tss− sd ø cssd ø c2exp tss− sdj,

and 0,c,1,0,c1,1,c2.1. Such conditions correspond
to the situation in which the first oscillator is ready to gen-
erate a spike,N1s0d=1, while the second oscillator is still in
a refractory phase asN2s0d,exps−tsd. Integrating Eqs.
(3.5) asymptotically fortP f0,1g, one findsN1std,expsttd
and N2std,expftst−sdg. If s,1 the spike of the second
oscillator starts during the spike of the first one. That causes
further synchronization of the oscillators. In the case ofs.1
the spike of the second oscillator can start only after the
spike of the first one and antiphase conditions are still valid.
Thus the critical coupling issc=1, which is also confirmed
by the numerical integrations.

We leave further details of the proof for Appendix C and
formulate the result here. Lett1 be the first positive root of
the equationN2std=1. Then for eachc,c1P s0,1d and c2

ùs, there is a sufficiently larget for which

N1ss+ t1d P S2, N2ss+ t1d P S1, t1 = s + os1d.

s3.7d

That means the initial situation(3.6) arises again in time
t1=s+os1d with replacingN1↔N2. From the above state-
ment one may conclude that

N1ss+ t2d P S1, N2ss+ t2d P S2, t2 = 2s + os1d,

s3.8d

wheret2 is the next root of the equationN1std=1 following
t1. Hence, the solutions again fall within the same set of
functions andT= t2=2s is a period of spiking antiphase os-
cillations of the system(3.5). The periodT is essentially
shorter than the periodT0 of the slowly oscillating solution
because the minimal values of the population increase from
superexponentially to exponentially small values. Numerical
simulations readily confirm these conclusions.

From the ecological point of view, in both cases of inde-
pendent areas,D=0, or of strongly coupled areas,D
.exps−td, oscillations of a single species are determined by
the functionN0std which are abrupt and can be dangerous for
populations to survive and develop. The average number of
the population

M = lim
t→`

1

t
E

0

t

Nssdds

in the stable periodic regime isM(N0std)=1. However, in the
case of weak coupling,D,exps−td, the average population
increases essentially,M(N1std),expstd ,t@1, and living
conditions become more safe and predictable. The same re-
sult is expected in an isolated area due to an additional small
influence of the order of exps−tsd ,s.1. Thus weak exter-
nal forcing can be an effective tool for control of population
growth.

C. Open chain of coupled oscillators

An open chain of coupled Hutchinson oscillators is de-
scribed by

Ṅk = DsNk+1 − 2Nk + Nk−1d + tNkf1 − Nkst − 1dg,
s3.9d

1 ø k ø K, N0 ; N1, NK+1 ; NK,

whereD=e−ts ,s.0,t@1.
Analytical estimations of typical dynamical regimes can

be obtained on the base of the method applied above. Rather
than giving here cumbersome formulas we illustrate our con-
clusions by numerical simulations in the case of five oscilla-
tors sK=5d. Figures 5(a)–5(c) demonstrate three possible
spiking regimes: completely synchronized, shifted phase,
and antiphase states.

In Fig. 5(a) one can see a synchronous solutionN0std
which is realized if the coupling coefficient is relatively
strong,s,aK. Here the constantaK,1 depends on the total
number of oscillatorsK so that aK→0 under K→`. As
mentioned before, oscillations are intensive and their period
is asymptotically large,,expstd.
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Figure 5(b) shows a wave structure formed by oscillations
of a shifted phase underaK,s,1. Spikes of the main os-
cillator (in our caseN3) generate waves of spikes moving to
both ends along the chain and creating a structure that is a
one-dimensional analog of targets. The period of oscillations
Tk is less thanT0std but still asymptotically long. Spikes of
the k oscillator are retarded with respect to the spike of the
leading oscillatork0 in time by uk−k0us. Therefores charac-
terizes the velocity of the wave. The maximal amplitude of
the main spike is slightly smaller than the maxima of the
spikes on the boundary. The appropriate initial conditions are
Nkssd=wkssdPSk where

Sk = hwkssd P Cf−1,0g:0 , wssd ø s1 + ckdexp tss− uk − k0usdj

s3.10d

andck,1 are arbitrary constants. One can also organize the
initial conditions to give “antitargets:”

Sk = hwkssd P Cf−1,0g:0 , wssd ø s1 + ckdexp tfs− sk0 − 1ds

+ uk − k0usgj. s3.11d

In this case waves periodically starting from the ends of the
chain annihilate in the center.

In Fig. 5(c) we present the antiphase solution realized for
relatively weak coupling withs.1. All functionsNj having
odd indices generate spikes almost at the same time; the
duration of the spikes is close to 1. At a times+Ost−1/2d
later the functions of the even numbers begin to grow, etc.
The basic characteristics ofNkstd do not depend onk:

T = 2s + os1d, Nmax= exptf1 + os1dg,

Nmin = expf− ctg, c . 0.

Such solutions zigzag most over the “spatial” variablek and
correspond to a stable cell-like structure.

D. Closed chain of coupled oscillators

The dynamical behavior of coupled Hutchinson oscilla-
tors organized as a ring is described by the system

Ṅk = DsNk+1 − 2Nk + Nk−1d + tNkf1 − Nkst − 1dg,
s3.12d

1 ø k ø K, N0 ; NK, NK+1 ; N0,

whereD=e−ts ,s.0,t@1.
In such a circuit four qualitatively different regimes are

possible. Again, the completely synchronous solutionNkstd
=N0std is observed if the coupling coefficient is relatively
strong,s,bK where bK,1 depends onK so thatbK→0
underK→`.

Targets appear under 2/K,s,1. In contrast to the open
chain, in the ring each oscillator can be the central one, for
example,N2 has been chosen as the leader for Fig. 5(d). The
waves of spikes propagate from this oscillator in both direc-
tions and annihilate at the opposite diameter. The regime can
be realized if the period of oscillations is sufficiently longer
than the round trip time of the wave.

In the case 2/K,s,bK ,bK,1, there can also exist at-
tractors of the traveling wave type, as shown in Fig. 5(e). In
this case special initial conditions have been prepared in or-
der to force spikes to propagate in a certain direction over the
circle, namely, we setNkssd=wkssdPSk where

Sk = hwkssd P Cf−1,0g:0 , wkssd ø s1 + ckdexps− td, k Þ ij,

s3.13d
Si = hwissd P Cf−1,0g:0 , wissd ø expfcitsk0 − idss+ 1dg, i

= k0 − 1,k0,k0 + 1j,

and ci .1,ck,1 are arbitrary constants. Here, the initial
functionwk0+1 corresponds to the excitory state, the functions
wk0

,wk0−1 provide the refractory state of oscillators, and all
other wkÞi correspond to the rest states. Then the wave of
excitation moves fromk0 to k0+1 over the circle, doing the
round trip in timeTK,Ks+os1d, which is, hence, the period
of oscillations. The neighboring spikes are shifted with re-
spect to each other in time by,s. In the case of a long ring
circuit (largeK) two-, three -, and so on spike traveling so-
lutions are also possible.

The existence of such traveling waves in the ring is im-
portant for understanding wave structures in a two-
dimensional network in which an excitation circulated per-
manently in closed contours can create complicated periodic
patterns.

In the case of weak coupling,s.1, the oscillations are
analogous to oscillations in an open chain and produce cell-
like zigzag structures. The spikes of neighboring oscillators
follow each other in a time,s. If K is odd the structures are
rather regular because odd(even) oscillators are synchro-
nized. If K is even, then more complicated patterns can be
observed.

E. Two-dimensional network

The conclusions made above on the dynamics of chains
can be expanded to the case of a two-dimensional network
described by

FIG. 5. Patterns corresponding to the temporal evolution of in-
tensities of five coupled oscillators calculated with Eqs.(3.9) for (a)
K=5,t=4,s=0.3, (b) s=0.8, (c) s=1.6, and(d) Eqs. (3.10) and
(3.12) and (e) (3.12), (3.13) for s=0.7. The horizontal axis is the
oscillator index sk=1, . . . ,5d, the vertical axis the timest
P f0,30gd. The highest(lowest) intensity is represented by white
(black) domains.
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Ṅij = tNijf1 − Nijst − 1dg + D o
sm,kdPZi,j

sNmk− Nijd,

s3.14d

whereD=e−ts ,s.0,t@1,i , j characterize the plane coor-
dinates of the oscillator, andZi,j is the set of coordinates of
the nearest, say, six, cells.

In such a network, a spontaneous spike of theNij oscilla-
tor at t=0 induces spikes of the nearestZij oscillators att
,s. They initiate, in turn, spikes of all neighboring oscilla-
tors excepting, however,Nij , and so on. Thus, a wave of
spikes is created and moves to the boundary of the region.
The collision of two waves results in their annihilation. That
is why the final structures depend essentially on the initial
states of the oscillators. The number of attractors is
enormous.

In the case of 0,s,1, the wave process described may
be reproduced by the cellular automaton introduced in the
following. In a discretized timeT each cell can take discrete
states numbered1,2, . . . ,m,0 where 0 means the rest state in
which a cell is ready to respond to an incoming influence by
a spike, the state 1 corresponds to the spike of the cell, and
the states 2, . . . ,m correspond to the refractory phase when
the cell does not respond to an external force. It follows from
the previous consideration that the duration of the refractory
state m can be estimated fromm=fst1+1d /sg where f·g
means one integer part, andt1=1+os1d is the duration of a
spike. The period of delay-induced excitation of a solitary
cell is M =fexpstd / stsdg. Heret@1 is supposed, and hence
M @m. Once a cell has passed the last statem it waits in the
state 0 until the moment when another cell of state 1 appears
among the neighbors orsM −md time steps pass. Then its
state changes again ass=1,2, . . . ,m,0.

Such an approach looks rough but it allows us to effi-
ciently simulate pattern formation and to determine the ini-
tial conditions leading to different structures. In general, the
simple rules given above can be specified, as many authors
did, for instance, to take into account dispersion in reaction-
diffusion processes[24] or to investigate cooperative phe-
nomena in laser dynamics[25]. We note, in addition, that
contrary to manyaxiomaticmodels our automaton is reason-
ably determined and its main quantitative characteristics, the
speed of wavess and the duration of the refractory statem,
have been derived. Excitory, refractory, or rest states of a cell
in the system(3.14) can be prepared by choosing the initial
functions in the way described in Sec. III D. Hence under
large enought we expect a good correspondence between
the dynamics of the automata and the network(3.14), al-
though the correspondence to the dynamics of the continuous
system(1.2) is not evident.

To reproduce structures related to solutions of the para-
bolic boundary problem(1.2) we take two types of initial
conditions. Figure 6 is obtained for automata containing 50
350 cells. In these figures, full points determine excited
spike states,s=1; the duration of the refractory phase ism
=5. The initial conditions have been chosen as a few arbi-
trarily placed excited oscillators of states=1 and pairs of
statess=1,2, while all other oscillators are in the rest state

s=0. One can then observe the creation and evolution of
targets of different periods.

Figure 7 demonstrates analogous targets to those realized
in the diffusion system(1.2) with similar initial conditions.
The larger wavelength in Figs. 7(d)–7(f) is mainly deter-
mined by the properties of a single oscillator; hence, the
period is of the order of,expstd, whereas the small period
Figs. 7(a)–7(c) is determined by the coupling strength.

Let the initial front ss=1d in the automaton be the line
segment that touches the boundary, and similar segments in
the refractory states=2 are located one step below(above),
as shown in Fig. 6(c). All other oscillators are in the states
=0. When time passes the waves twist around their free ends

FIG. 6. Creation and evolution of target centers(a), (b) and
spirals(c), (d) in the cellular automaton. In the beginningT=0 (a),
(c) all cells are in the rest states=0 excepting cells in the excitable
states=1 (black dots) and refractory cells of states=2 (white dots).
(b),(d) Further evolution of the wave front atT=10 is marked by
black dots(states=1). Period of self-excitationM =25.

FIG. 7. Targets as solution of the partial differential equation
(PDE) (2.1) with delay«=0.5. (a)–(c) show short wavelength pat-
terns obtained if the central point is fixed for all time atN=Ns1.
Long wavelength patterns(d)–(f) evolve if N=Ns1 only at t=0 (see
text).
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and evolve into single or double spirals, Fig. 6(d).
Figures 8(a)–8(i) represent spirals in the diffusion system

(2.1). Here, we used initial conditions similar to those in Fig.
6(c). In Fig. 8(a) the line segment was chosen according to
Eqs. (3.13) with Nsx0,y,td=exps0.6td for −tø tø0 and 0
øyøL /2, whereas neighbors were put atNsx0±dx,y,td
=expf7s1.5t+tdg. As a result, the segment is forced to move
in the negativex direction; its free end in the center of the
domain twists and forms a(one-armed) spiral. In this way it
is also possible to get coexisting reverberators as well as
spirals with an arbitrary number of arms using an initial con-
figuration of the form of Fig. 6(c) [see Figs. 8(d)–8(i)]. In the
long time limit only the one-armed spiral seems to survive,
but the decay time of multiarmed spirals increases essentially
with increasing time delay.

By synthesizing the initial conditions one can study the
evolution of complicated patterns[26]. In particular, the
wave circulation along a ring discussed in Sec. III D can
create a target without the leading oscillator in the two-
dimensional network. It is also possible to construct a more
complex front, say in the form of the letter “T” as shown in
Fig. 9. At the initial momentT=0, the image was formed by
excitable pointsss=1d of a closed contour which consists of
rsm+1d cells (r integer), in the consecutive states
1,2,3, . . . ,m,0, and we put this contour on a random back-
ground. Finally, in Fig. 9(c), a number of spirals and periodi-
cally appearing “T”[5] survive.

It would be interesting to realize such wave structures in
the continuous system(1.2), which we leave for future work.
The existence of contours providing circulation of excitation
and, as a consequence, periodic attractors of complex form

can be associated with a dynamical image memory. This
problem is under intensive permanent investigations[27] and
from this point of view we remark that in many aspects the
behavior of the Hutchinson oscillator is similar to the behav-
ior of a formal oscillating neuron hence, the system(3.14)
can be proposed to model and study coupled neurons. For
biological neural networks, however, multidimensional diffu-
sion problems are more natural, as each neuron, is influenced
by hundreds or thousands of other neurons and, in turn, con-
trols the same number of neurons. At the same time we note
that solutions of traveling wave type can also be observed in
systems of globally coupled(all to all) oscillators; in particu-
lar, attractors called “splay states” have been obtained in cir-
cuits of Josephson junctions[28] or in the dynamics of a
multimode solid-state laser[29].

IV. CONCLUSION

We considered pattern formation in a system with diffu-
sion and delay, which can be encountered in many fields
such as population dynamics, biology, mechanical engineer-
ing, or physics. Due to the interplay of these processes, very
complicated structures can arise, such as spiral waves and
space-time turbulence. It has been shown previously[13]
that steady inhomogeneous regimes in diffusion dominated
systems without delay can exist only if the size of the area is
sufficiently large and, additionally, is of a complex geometry,
in particular, is not convex. In a simple region, multicompo-
nent systems governed by two or more parabolic equations
are necessary to observe complex structures in space and
time. Thus it is a delay that already induces in a natural way
a rich variety of patterns in the single-species diffusion
equation.

Our work rigorously relates the diffusion chaos already
found in a partial differential delay equation, namely, the
diffusive Hutchinson equation, at threshold with the well-
known Benjamin-Feir instability in the complex Ginzburg-
Landau equation.

It turned out that the complex Ginzburg-Landau equation
serves as a normal form valid near the first bifurcation of the
Hutchinson equation. To describe patterns well above thresh-
old, higher order terms in the Ginzburg-Landau equation are
involved. However, this approach is not really sufficient be-

FIG. 8. One, two, and four-arm spirals from PDE(2.1). The
initial conditions are chosen in a similar way as those in Fig. 6(c)
(see text).

FIG. 9. Memory effect in the cellular automaton. White dots
mark the front of the waves(states=1). At the initial moment(a)
T=0 some of the excitable pointss=1 are included into the closed
contour which consists ofrsm+1d cells (r integer), m=2, in the
consecutive states1,2,0, andform the image “T.” Period of self-
excitationM =25. (b) Pattern atT=5. (c) Finally, atT=34 a number
of spirals and “T” appearing with the periodsm+1d survive.
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cause far from threshold oscillations are transformed into
strongly nonlinear spikes, for which the amplitude of the
second harmonic of Fourier expansion is of the same order as
the first one. Hence the inclusion of nonresonant nonlinear
terms that break the symmetry of the phase in the complex
Ginzburg-Landau equation might be necessary, as it may
turn a stable limit cycle into a spike solution[30,31]. The
temporal behavior ofjstd obeying

]tj = s« + ivdj + aj2 − uju2j s4.1d

shows spikes for certain values of the parametersa and«. If
diffusion is added, target patterns and spirals can be found in
two spatial dimensions[32].

Another explanation of patterns observed far away from
threshold is given by constructing a cellular automaton. The
algorithm and quantitive characteristics are based on the ana-
lytical investigations of the dynamics of coupled delayed os-
cillators. Cells can be excited spontaneously or by the influ-
ence of other cells and generate spikes. After the spike, the
cell recovers its properties during a long refractory period.
This behavior is well known from excitable media and can
explain the spiral waves of a mobile population living in a
homogeneous environment. The obtained analytical estima-
tions also explain the dramatic character of oscillations of an
isolated population as it decreases in minima to superexpo-
nentially small values. The same is valid for the synchro-
nized regime in coupled populations if the coupling is larger
than exps−td. In the case of relatively weak coupling, we
demonstrate various types of phase synchronization, result-
ing in the essential growth of the average population and
improving living conditions.

Phase synchronization also relates to processes of pattern
formation. The advantages of the analytical method applied
are that we can approximate the speed of waves in the dis-
crete network, the duration of the refractory phase, and initial
conditions leading to the development of different structures.
In this way it is possible to get on demand various structures
like targets, multiarm spirals, or traveling waves in a one-
component system with local delayed feedback. Similar au-
towaves arise in chemical multicomponent oscillatory reac-
tions, heart pacemaker cells, laser light generation,
oscillatory neural networks, etc.[33–37] Thus, the imitation
of complex phenomena in various autowave media is one of
the possible fascinating applications of the diffusive Hutch-
inson oscillator.
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APPENDIX A

Inserting the series(2.4),(2.5) into the equation for devia-
tion zsx,td and collecting terms of the same orderd one finds
the slowly varying functionsuij :

u20 = 0,

u22 = j*2 − exps− iv0t0d
i2v0 + exps− i2v0t0d

,

u33 = − u22j
exps− iv0t0d + exps− i2v0t0d

i3v0 + exps− i3vt0d
,

u40 = − u22u22
* fexps− i2v0t0d + expsi2v0t0dg,

u42 = − u33j
* expsiv0t0d + exps− i3v0t0d

i2v0 + exps− i2v0t0d
.

At the orderd3/2 we find the equation for the main amplitude
j:

s1 + t0
2d

] j

] dt
= s1 − it0dDj + t1s1 − it0dj − jju2f3t0 − 1 + is3

+ t0dg/5, U ] j

] x
U

x=0
= 0, U ] j

] x
U

x=1
= 0.

With the rescaled time variable

s= dts1 + t0
2d−1

and amplitude

j → j„s3t0 − 1d/5…1/2

the equation is transformed to the standard form(2.6) of a
complex Ginzburg-Landau equation.

APPENDIX B

The method of asymptotic integration described below
permits one to obtain uniform asymptotic formulas for
steady-state regimes with any degree of accuracy, but we
restrict ourselves to the leading terms of the solutions.

Let us denote the sequential positive time moments when
Nstd=1 by t0,t1, . . . sothat t0,t2, . . . ,t2k, . . . aremoments of
the onset of spikes whilet1,t3, . . . ,t2k+1, . . . aremoments of
the cessation of spikes. We chooset0=0 and the initial con-
ditions from the setS0 given by Eq. (3.3), Nssd=fssd ,
sP f−1,0g. Under these conditions one can integrate Eq.
(3.2) and get

Nstd = expftt − etst−1dgf1+ os1dg, t P f0,1g. sB1d

The solution increases up to the maximumNmax=Ns1d
=et−1f1+os1dg at the end of this interval. During the next
interval tP f1,2g the solution decreases monotonically as

Ṅ,0 becauseNst−1d@1. ReplacingNst−1d by the function
(B1) and integrating Eq.(3.2) at this interval we find

Nstd = exphtt + etfe−etst−2d
− e−e−t

gf1 + os1dgj, t P f1,2g,

sB2d

from which we estimate the moment

t1 = 1 +
ln t

t
+ oS ln t

t
D sB3d

whenNst1d=1. The solution decreases further in accordance
with
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Nstd = exphtt − 1 +etfe−etst−2d
− 1gf1 + os1ddg,

(B4)
t P f2,1 +t1gj,

up to the minimum att= t1+1:

Ns1 + t1d = Nmin < expf2t + ln t − etg < exph− etf1 + os1dgj.

sB5d

From this moment the solution increases monotonically as
Nst−1d=os1d; hence

Nstd = Ns1 + t1detst−1−T1df1+os1dg = expstt − t − etd,
(B6)

t P f1 + t1,t2g.

At the moment

t2 =
et

t
f1 + os1dg, sB7d

the population again reaches unity,Nst2d=1, and the problem
of further constructing the solution is returned to the original
problem becauseNst2+sdPS0,sP f−1,0g.

Finally, let us introduce the operator of the shifting along
the trajectoriesP(fssd)=(Nst2+sd) ,sP f−1,0g, and a set
Ssad :cssd :cs1d=1,0,cssdøaes which is wider thanS0. It
is possible to show thatPSsad,S0. The existence of the
stable periodical spiking solution of Eq.(3.2) is thus proved.

APPENDIX C

To prove the existence of antiphase oscillations we formu-
late five lemmas representing the asymptotic estimation of
solutions for the initial conditions(3.6). Here we restrict our-
selves to the simplest cases.2, but the method can also be
applied to the case of 1,s,2.

For calculations we need the formal solutions of the sys-
tem (3.5),

Nistd = NishdexpFst − e−tsdst − td − tE
h

t

Niss− 1ddsG
+ e−tsE

h

t

NkÞissdexpFst − e−tsdst − sd − tE
s

t

Nisj

− 1ddjGds, i,k = 1,2. sC1d

The first lemma gives the upper estimation of the solutions in
a sufficiently long time interval.

Lemma 1. Let tP f0,2s+1g; then the inequalities

N1 ø 2ett, sC2d

N2 ø c0e
tst−sd, c0 = c2 + 2s2s + 1d sC3d

are valid in the case of sufficiently larget. To prove the
lemma we note that for any time interval it is evidently valid
that

Ṅ1 + Ṅ2 ø se−ts + tdsN2 + N1d.

Taking into account the initial conditions(3.6) one can then
estimate

N1 ø f1 + c + os1dgett,

N2 ø N2s0dett + etst−sdE
0

t

N1ssde−tsds,

which leads us to the final statements(C2), (C3).
Now we improve the estimations in separate steps.
Lemma 2. Let tP f0,1g; then the inequalities

N1std ù ett−2, sC4d

N2std ù c1s1 − cdetst−sd sC5d

are valid. They follow from Eqs.(C1) in which we takeh
=0, drop the second(positive) term, and take into account
the formulas(C2), (C3).

Lemma 3. Let tP f1,2g; then we have the estimation

N2std ù c1s1 − cd2etst−sd. sC6d

To prove this lemma we use Eq.(C1) in which we takeh
=1, drop the second positive term, and apply the inequality
(C3).

Lemma 4. Let tP f1+d ,2g whered is an arbitrary suffi-
ciently small constant independent of larget. In this interval
the inequality

N1std ø ets1−2sd sC7d

is valid. To prove the lemma we consider the formal solution
(C1) with h=1 and use the estimations obtained above for
the functionsN1ss−1d andN2ssd on the right-hand side.

Lemma 5. Let tP f2,s+dg; then the estimations

N1std ø N2s2dst − 2dexp tst − 2 −sd + exptst − 1 − 2sd,

sC8d

N2std = cstdexp tst − sdf1 + O„exp s− tdd…g, sC9d

where

c1s1 − cd2 ø cstd ø c0

are valid.
The existence of the valuet1=s+os1d follows immedi-

ately from Lemma 5. Also, it follows from the above esti-
mates that the inequalities

N2ss+ t1d ø s1 + cdets,

c1e
tss−sd ø N1ss+ t1d ø setss−sd, sP f− 1,0g,

sC10d

are valid for every fixed 0,c,c1,1,c2.s. Thus inclusions
(3.7) are valid and an antiphase solution exists.
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