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Spatiotemporal structures in a model with delay and diffusion
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Pattern formation described by differential-difference equations with diffusion is investigated. It is shown
that an arbitrarily small diffusion induces space-time turbulence just at the instability threshold of the homo-
geneous stationary solution. We prove this property by deriving a complex Ginzburg-Landau equation on the
basis of normal form analysis. Well above threshold, such turbulent structures give way to synchronized states
ordered by spirals and targets. This secondary instability can be understood with an asymptotic method
representing the system as a cellular automaton network.
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I. INTRODUCTION population. It is a delay that induces self-oscillations in the
Various structures despite their different natures ofte bsel\;llce of mtiracuon. W'tthh anotlher spemiér or component
demonstrate similar features. That implies the existence 1. Moreover, by varying the only parametstz one can
urther observe the transition to oscillations of relaxational

some universal laws which are still far from being com- 51 infinite-di ional oh £ this f
pletely understood. To this end, investigations of a number o&’opnea[l gq'aailr(‘)r']” inite-dimensional phase space of this func-

basic models have aroused permanent interest, for instance, ) . .
P Equation(1.1) can be exploited for systems with restored

two-component reaction-diffusion equations or the ComplexesourceS' hence it is indeed of a general meaning. Related
Ginzburg-Landau equation used commonly to simulate such RS . . 9 : 9-
blems arise, in particular, in the dynamics of nuclear re-

spectacular patterns as spirals, targets, and spatiotempo . . .
cans in botr?living and artFi)ficiaI meo?[a 2. In mogt casesp actors[6] or in the dynamics of loss-modulated lasers with
L ' Ithoelectronic feedback?]. The oscillatory property of the

than two variables are necessary because they can provif’élayed system can also be used to construct neuron models

excitable or oscillatory behavior of local subsystems so that I_n_ a similar way, the de!ay due to thg finite speed of
the physical background of the process is a competition be:glmpllfler's has recently been incorporated into a model of an
tween two playergactivator-inhibitor, predator-prey, phase- electronic neural networfd].

- : - - o In order to describe the dynamics of a mobile population
;rgrp])lgggﬁa,setq. having different relaxation rates and diffu living in the area() € R?, Eq. (1.1) has been generalized to

There is also another mechanism that can support oscilla{he parabolic boundary value proble10
tions in a single-component system. We refer here to the

mathematical model proposed by Hutching8hmany years r =DAN+M[1-aN({t-7)]N, N =0, (1.2
ago, Vlxer
N=M[1-N(t-n]IN, (1.1) whereA is the Laplacian,v is the normal to the smooth

o _ . _ boundaryI’ of the area() e R?>, andD>0 is the mobility
which includes a time-delayed term in order to describe thgefficient. The Malthusian factdvl=M(x)>0 and the in-

feedback regulatio_n of a biological population Iiving in a homogeneous resistance of the environmena(x) can be
homogeneous environment. Hdﬂ(at)>0 is the n.ormallzegl space dependent; if not, they can be st 1,a=1 without
number of the populationM >0 is the Malthusian coeffi- 555 of generality. More complicated models of several equa-

cient of linear growth, and>0 means the average age of jons for competing stage-structured population dynamics are
the species reproducers. In the lim#t0, Eq.(1.1) tells us  jiscussed if11].

about one of the simplest quadratic nonlinear laws—the 10- \yile the pointlike systenil.1) or the diffusion system

gistic law—of growth with a final stationary state of the (1 o) \ith 7=0 demonstrates rather regular or stationary dy-
namics, the joint efforts of diffusion and delay in E4.2)
can induce various nonstationary patterns, including spa-

*Electronic address: bes@physik.tu-cottbus.de tiotemporal chaos, target centers, and spiral waves. To our
"Electronic address: grigor@bsu.by knowledge, such a rich variety of structures in single-species
*Electronic address: kasch@uniyar.ac.ru systems has not been yet demonstrated; see, for example, the
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reviews[1,2,12,13. This phenomenon seems to be close to=1 and fixing the size of the systelmwe can write Eq(1.2)
that in an optical resonator with passive Kerr-like nonlinearas
media where two-dimensional feedback provides a spatial

transf_ormation of patterns a_nd, as a consequence, nonlocal IN = N(x,t) = N, HN(x,t = 7) + 55>2<XN(XJ),
coupling between distant point$4]. But the differences are
essentia[15]: (i) contrary to the spatial shift, the time delay (2.1)
introduces extrginfinite) numbers of degrees of freedom and IN IN
(i) quadratic nonlinearity leads to relaxation oscillations, ax =0, Ix =0,

x=0 X=2m

which result in more possibilities for the systgh.2). We
also note several schemes for time-delayed feedback contr@lhere s=L2D is the diffusion coefficient.

of spatial patterns recently proposed and aimed at stabilizing |n the pointlike system without diffusion§=0, a stable

or manipulating patterns originally produced by systemsjmit cycle is created in the vicinity of a certain critical value
without feedback16,17. However, in the case of local feed- ¢4 the time delay. This result has been obtained by several
back one can suppose additional complexity induced by thg,ehqqs4] including a normal form analysis. Below we
de'%{ﬁg Cgﬁglr'ggf’ofﬁ;aet\i'gr:y di%aﬂ)aldzﬁmgﬂg diffusion is Cer_expand the method to the case of the spatially distributed
tainly of Fi)mportance. It is hence reaso);]able to consider sys§y3tem(2'l) and derive the amplitude gquation that predipts
tematically such a mechanism in the framework of the fun-"¢ of the well-known ways to obtain _c_om[ile>_<2 behavior
damental Eq.(1.2) distributed in time and in space and when 6—0. Note that the diffusion coefficierd=L""D be-

containing only two parametef and comes smaller and smaller when the spatial size of the sys-

The paper is organized as follows. In the first part, we usd€M increases, so the situation is typical. An analogous situ-
bifurcation analysis and derive the normal form in the neigh-2tion can occur in systems with a large delay, for which an
borhood of the instability threshold of the homogeneous sta@MPlitude equation of a similar universal type has been ob-
tionary solutionN=a"! of Eq. (1.2). It appears to be the tained recently if20]. _
complex Ginzburg-Landau equation with parameters always 1 N€ System2.1) has two stationary homogeneous solu-
satisfying Benjamin-Feir instability. That explains the exis- 1ONSN(X,t)=Ngj,
tence of “diffusion chaos” already at threshold. This behavior Ng=0, Ng=1. (2.2)
is replaced by a regime of another sort, namely, spiral waves, ) ) . . )
when the time delay increases further. These patterns, how0 order to verify their stability we write the equation for a
ever, cannot be described completely in the framework of thémall deviation from the stationary statex,t)=N(x,t) = Ns;,
local analysis. In this case we develop a special asymptotiBeglect the nonlinear term, and seek for the solution in the
theory. Instead of boundary value problem systems, we studfprm z=expA\t)(coskx). That results in the characteristic
a set of coupled difference-differential equations which areequation
obte}ined from Eq(l.2)_ as a result _of the standard_ approxi- N=1-Ng— ste‘”— 2. 2.3
mation of the Laplacian. The main assumption is that the
delay 7 is sufficiently large and the diffusion paramefeis  from which we conclude that the homogeneous solution
sufficiently small(or the ared) is sufficiently wide, whichis Ng=0 is always unstable for any perturbation of the wave
biologically natura). These conditions can provide intensive numberk < 62, while the stateNy,=1 can be stable or un-
oscillations of spiking type. We first approximate analytically dergoes a Hopf bifurcation at the critical value for the time
such a solution to the equation without diffusion. Second, wedelay. In the last case, substituting the characteristic roots in
consider the dynamical regimes of two Hutchinson oscillathe form\,=iwy+ o\ 1y into Eq.(2.3), we find that oscillatory
tors with diffusionlike coupling. In-phase or out-of-phase os-instability with the frequencywy=1 occurs for the homoge-
cillations are found depending on the diffusion value, andneous modé&=0 at the time delay,==/2, and other modes
analytical approximations are obtained of antiphase regime®ecome unstable at> r,. However, if 6—0 then an(as-
Then the dynamics of a one-dimensional open chain as wejimptotically) infinite number of spatial modes around the
as that of a circuit of a few coupled oscillators will be studiedhomogeneous one occur in the same critical conditions in a
and the existence of wavelike regimes will be demonstratedsmall neighborhood of the critical parameter,

These results have an independent meaning in the context of _

. . . 2 T=1y+ O71. (2.9
intensively studied problems on synchronization of relax-
ation oscillations [18]. Finally, we consider a two- In this vicinity the modes are excited simultaneously with the
dimensional cellular network for which we formulate a same(asymptoti¢ frequencyw,. Following the normal form
simple algorithm for the action on the base of the obtainedheory we represent the solution in the form

features of coupled oscillators. This way of investigation, 2 P

starteq by Wiener an_d Rosenblu¢tl9], gn_ables us to expose 2(x,t) = 52 oot + 5 uzjeijw0t+ 852 ugjeijw0t+ e 4 C.C.

the existence of various attractors similar to target centers, =0 i=0
spiral waves, etc. 2.5
where the amplitudes,u,; are functions of the slow time

First we consider a one-dimensional homogeneous envivariable 6t and of the spatial variablg. In addition, each
ronment. Taking without loss of generality the réle=1,a  function should obey the corresponding boundary conditions.

Il. NORMAL FORM ANALYSIS
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The amplitude of the main term of this series is determined
by the following order parameter equation:

T . :
ds€ = Tl<1 - |E)§+ (1+ |Cl)‘9§x§_ §|§|2(1 +icy),
26 &
8_§ =0, (9_§ =0, (@) t= 18
JX x=0 28 X=21m
where :
I C_3+7T/2 2.7 .
To20 T zanr-v '
N
Details of the derivation are given in Appendix A. {* ¥
Equation(2.6) is the complex Ginzburg-Landau equation s, ", (o= 2

(CGLE), the universal equation without delay and without

any small parameter. Instead, the complex coefficients sup- FIG. 1. Numerical solution ofa)—«c) the two-dimensional2D)
port both amplitude and phase diffusion.7f>0, i.e., the  Hutchinson equation with diffusio2.1) and (d)~(f) of the cubic
time delay exceeds the threshold vatwk?, Eq.(2.6) has the 2D Ginzburg-Landau E¢2.6) on a quadratic domain. The initially

homogeneous periodic soluti@rr &expliw, ot) where randomly excited squares expand and finally fill the whole layer.
The Benjamin-Feir condition is satisfied and spatiotemporal chaotic

> 57m _ mal2 + &3 +al2)/5 patterns are found in the long time limit=1.1 ,. Here and in all
&= 3g2-1 177 1 + /22 ' following boxes the side length is scaled to 1, and the small expan-

. _ ~ sion parameter i$=6x 10°°.
The corresponding homogeneous solution of the original

equation Is formed rather soon and also fill the whole layer at the end. If

N(x,t) = 1 + 2512, cos(t+ Swit) +O(5).  (2.8)  two fronts meet, they annihilate each other, a behavior well
known from excitable mediésee, e.9.[12]).
This pel’iOdiC state can be unstable as the coefficients Satisfy However, the Spatiotempora' behavior of these patterns
the well-known Benjamin-Feir conditiof21] cannot be described fully adequately in the framework of a
1+cc, <0 local analysis. Actually, to trace the evolution of the system
1%2 .
further away from threshold one can continue the procedure
which is satisfied for the coefficients given in E®.7). and obtain higher order nonlinear terms. Then the normal
Hence we conclude that there is a possibility of diffusionpartial differential equation takes the form
chaos already at onset. 5
_ The results are the same for a two-dimensional space re-0 ¢ _ 7_1<1 —i7—T>§+ (1+ic)Aé— EgL +icy) + 5eé(cs
gion with corresponding boundary conditions. Figures ds 2
1(a)—-1(f) represent numerical simulations of both E¢&1)
and(2.6). For both systems we used a FTCS method for time
and space discretizatid22]. A mesh of 256< 256 points in ~ where
space gives a reasonable resolution and accuracy. The code
was implemented on an alpha workstation. To compute the Ca= M = M
delay term in the original system, all former time steps up to 1037-2)’ 5(37-2)
the delay time have to be stored in an array, making the cod.?

rather memory consuming. This is of course not necessar inhe real part of the coefficient of the quintic term is positive,
Y g y C3>0. This means that when the amplitude of the solution

the case of the Ginzburg-Landau equation. becomes relatively large the system leaves the local vicinity

For both (and aliso for all following series, the initial of the homogeneous solution and diverges. Nevertheless
pattern was constructed of two spatially separated squares 9 ges. '

where the values of the fields were chosen randomly with an ougidicriessolzlét)li)rzw(?)o;i qvifgr )a(;}?gsb@;g?g?hfgrsﬁm tg;é?(;%eof

equal distribution between +0.05. For the rest of the layer we L 9 ppr
diffusion chaos and the tendency to form traveling waves

and spirals can be seen. This picture is supported by the fact

or phase turbulence. The initial seeds invade the region%shat the Benjamin-Feir unstable region is bounded from

without excitation and finally fill the whole domain. Pattern above in thek-r, plane if complex quintic terms are present

formation stays time dependent and chaotic in the long tim(—[\23]' To demonstrate this we make for Hg.9) the ansatz
limit. E0xy, ) = [Ac+alx, ) Jexpli[kx+ oK)t + D(x,y, )]}
When the time delay is increased further, diffusion chaos (2.10
is replaced by a regime of another sort, namely, spiral waves '
[Figs. 2a-2(c)]. In the original system, turning spirals are with A, being the smalle(stablg real root of

+icy), (2.9
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FIG. 3. Phase diagram found by the method of phase equations

vj
)ﬂ applied to the quintic CGLE. Bounded solutions exist between the
s two bold lines. Thin solid lineD | =0; thin dashed lineD;=0 In the

small region between the upper bold and the dashed line nonchaotic
solutions are possible.

FIG. 2. (a)—(c) Numerical solution of the 2D Hutchinson equa-
tion with diffusion (2.1) well above thresholdr=1.5 5. Now spi-
rals are formed early and persist in time. The development strongly
resembles that known from excitable medidy—(f) Numerical so- neous oscillationgFig. 3). It is in this region where spirals
lution of the quintic Ginzburg-Landau E¢R.9), but above thresh- can be formed.
old, 7,=0.41. The diffusion chaos is suppressed and more regular Finally, Figs. 29)-2(j) presents solutions of the CGLE

structures evolve as a secondary instability, already showing thihcluding a seventh order term of the simple form
tendency to form spiralgg)—(i) Numerical solution of the seventh

order Ginzburg-Landau equation with global stability. Spirals and - |§|6§,

excitable behavior are found well above threshold 4g0.8. which is here not systematically derived from the basic equa-

tion, but only used to assure global stability. Now the region
-k — Aﬁ + 503Af<‘: 0 of larger 7, can be explored and spirals are clearly the pre-
ferred structure.
To get a more accurate insight into the mechanisms of
w(K) = = ry7l2 — ¢ k2 - c2A§+ 5c4A‘k‘. spin_al dpminated structures, we now leave the local approxi-
mation in normal forms and wish to present another way to
Note thata=0,dP=const is an exact solution of E@®.9) and  understand pattern formation far away from threshold in the
describes traveling waves. To test their stability, one mayext part.
perform the usual linear analysis. After adiabatic elimination
of the amplitudg21], one arrives at a linear phase diffusion
equation having the form

and

Ill. DYNAMICS OF COUPLED HUTCHINSON EQUATIONS
WITH A LONG TIME DELAY

8‘q):vxﬁxq)+D”(92XX¢+Dﬁ>2’yq) (211 Here we turn to the systems of coupled differential-
with the diffusion coefficients difference equations
— o+ 20C,A2 N=DAN+ AN[1-N(t-1)], 3.1
D, =1+ 2t 20 (.12 <N+ 7N[1 - N(t- D)] (3.0
— 1+ 26CA¢ whereA is the difference analogy of the Laplacian, taking
into account the boundary conditions and geometry of the
2k?2 region, the current time variable is normalized so that the
Dy=D.+~ Aﬁ + 2503Aﬁ' (2.13 time delay is equal to unity, and(t) € R¥ is a vector whose

elements mean “the population number” in the correspond-
Both coefficients are negative at thresh@Benjamin-Feir ing subcell of the ared). The system(3.1) may be also
instability) but may change their sign for larger valuesmgf  referred to as a model describing the dynamics of the popu-
allowing for a region of stable traveling waves or homoge-lation living in k local areas, and the operani describes
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the exchange of specimens between neighboring areas in the ' ' ' ' ' ' '

absence of migrations within the areas. The constaftar- o /\ /\ a

acterizes the time delay, which is assumed to be sufficiently
ditions are not very hard because numerical simulation //\
| | | | |

Z

large, > 1, while the coupling coefficierld <1. These con-
shows thatr~27,=3 is already long enough to induce N
strongly nonlinear oscillations.

Without coupling (D=0) each equation of the system
(3.1) has a slow-oscillating periodic solutiddy(t). We find

(=
o
'S
™
-
—
(=]
h—
™~
-
LS

T
such a solution to be stable in a system with the coupling Na b
coefficientD exceeding the critical onB.=exp—7). That is J J\ i
why it is convenient to consider the small diffusionlike co-
efficient in the form N /\ /\ j\

1
| | | |
D=e™, o0>0; 0 5 10 15 20 25 30

then the critical coefficient of diffusion corresponds to the T T T T T
critical o,=1.

¢
Being simpler than Eq(1.2), the model(3.1) has never- N2 | /\ A j\ /\ _
theless a rich set of attractors. Below we shall obtain analyti- / \ j
0

cal approximations for the most important solutions from
J/\ |A ! /\ ! j\
5 20 25

this set, namely, the slowly oscillating solution characteriz-
10 15

ing synchronous oscillations as well as the antiphase solution N
for two coupled oscillators. We then numerically demon-
strate solutions with shifted phases in one-dimensional open ti
and closed chains and in a two-dimensional region. The so- i ) ,
lutions can be interpreted as wavelike patterns moving with a_ /G- 4- (& Numerical solution of Eq(3.2) (bottom and its
velocity dependent on the coupling coefficient. When the"’m""lyt'c"’II approximatioritop) by Egs.(B2), (B3), (BY). Ti?" (b
diffusion coefficient decreases the oscillations become out o?{ncmot? ous and) agt'phasg Slc"”t'.onz of Eq@'? with 754 anfd h
phase and the patterns get more and more complicated. U_O'|5t(. ) ,ijN(C)'[g fo]vilrtlcl\? aE((')S BO?nOteS the number of the
Our conclusions, however, have to be considered only 8P 'on(N.No €0, 10], Ny, Nz 0, 30).
tendencies for the original parabolic HG-2). It turns out to i i ,
be impossible to expand correctly the results obtained to the€layed systems, which allow us to integrate the equation
boundary value problerfL.2) because increasing the dimen- StP by step using the large parametert is possible to
sionK of the systen(3.1) requires increasing the parameterShOW that after a certain time these solutions again fall

7. Nevertheless, the observed structures correlate quite welfithin S Thus, the operator of the shifting along the trajec-
with those found for the original model. tories, which makes a function fro@correspond to a func-

tion also froms, is naturally determined. To a fixed point of
the operator there corresponds a periodic solution of Eq.
A. Solitary Hutchinson oscillator (3.2) of the same stability.
Let us choose=0 at the moment of the onset of a spike
and determine the sel§, of initial functions ¢(s),
se[-1,0], in the form

30

A single Hutchinson oscillator with a large time delay is
determined by

N=N1-NE-D] r>1. 3.2 SS9 =eT1+9(9)]; lol=<72 90)=0. (33

From the local analysis we know that there is a stable limityaiqils of the further procedure are given in Appendix B.

cycle if 7> /2. This cycle is close to a harmonic one at its ginaly, we find that Eq(3.2) has an orbitally stable periodic
creation. Far away from threshold the harmonic oscillationsgtion No(t) with the period

are transformed into sharp spikes with large-period pulses.
The corresponding periodic solution is called slowly oscillat-

ing as the intervals between neighboring local maxima or
minima are larger than the time delay.

In order to get such a solution analytically we consider theThe maxima and minima of the spikes
pha§e space of E.(B.Z),.Whlch is the Banach spacq_.l,o] of Nopop= €11 +0(1)],
continuous functions, i.e., the values of the functions from
Ci-1,g should be given as initial conditions. In this space, we _ a
shall distinguish gfairly wide) setS and construct uniform Nivin = €Xp(~ €T1 +0(1)]}
asymptotic approximations of the solutions with initial con- follow each other in a timé,;,;—tma=1+0(1), which deter-
ditions from this set. One way for the asymptotic buildup of mines the width of the spike. The comparison between nu-
solutions of the spiking type is opened by peculiarities ofmerical and analytical solutions given in Figajconfirms

To= e—7_7[1 +0(1)]. (3.9
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that the approximation obtained is already quite satisfactory Ni(s+t) €S, Nys+t)eS, t;=oc+0(1).

for 7=3, i.e., twice above the threshold. (3.7)
Summarizing, after generation of a spike of large ampli- '

tude~e™1, the system recovers its properties during the long That means the initial situatiof8.6) arises again in time

period~e"/ 7, which is caused by the fact that the populationt;=c+0(1) with replacingN;« N,. From the above state-

decreases to a superexponentially small value. From the bignent one may conclude that

logical point of view, such a dramatic scenario can result in

disappearance of the population. But it can easily be pre- Ni(Stt) €S, Ny(s+ty) €S, t,=20+0(1),

vented by a small additional influence like migration from (3.8

neighboring areas. We consider this mechanism in the next _ . .
secg'][ion g wheret, is the next root of the equatidN,(t)=1 following

t;. Hence, the solutions again fall within the same set of
functions andT=t,=2¢ is a period of spiking antiphase os-
cillations of the systen(3.5). The periodT is essentially
The dynamics of two coupled Hutchinson oscillators isshorter than the period, of the slowly oscillating solution

B. Two coupled Hutchinson oscillators

governed by the system because the minimal values of the population increase from
superexponentially to exponentially small values. Numerical
. simulations readily confirm these conclusions.
Ny = 7Ni[1 = Ny(t = )]+ D(Nz = Ny), y

From the ecological point of view, in both cases of inde-

) (3.9 pendent areasP=0, or of strongly coupled aread)
Np = No[1 = Ny(t = )]+ D(N; = Np), > exp(—7), oscillations of a single species are determined by
the functionNy(t) which are abrupt and can be dangerous for

where the coupling ter®(N,—N,) is the difference analogy popylations to survive and develop. The average number of
of the diffusion operator in the original partial differential the population

equation,D=e"",0>0.

If the coupling coefficient is relatively strong, then the
system(3.5) demonstratet-phaseoscillations as shown in
Fig. 4(b). In this case each equation of the systhb) has
the slowly oscillating periodic solutioiNy(t) given in the in the stable periodic regime M(Nq(t))=1. However, in the
previous section. The synchronous solution becomes urcase of weak couplind? <exp(—7), the average population
stable when the coupling becomes weaker than the criticahcreases essentiallyvi(N4(t)) ~exp(7),7>1, and living
one, o> o.. Oscillations are still intensive but they aa®-  conditions become more safe and predictable. The same re-
tiphaseand their period decreases essentially as Fig) 4 sultis expected in an isolated area due to an additional small
demonstrates. influence of the order of expro),o>1. Thus weak exter-

In order to prove analytically the existence of such an-nal forcing can be an effective tool for control of population
tiphase regimes and estimate the critical vaiyewe con-  growth.
sider a sufficiently wide set of initial conditions, namely,

N1(S)=(s) € S;,Na(s)=#(s) € S,, where

t
M = Iim}f N(s)ds

t—oe 0

C. Open chain of coupled oscillators

S ={e(s) € Cr.1. 0 < @(s) < (L +c)exp7s, ¢(0) =1}, An open chain of coupled Hutchinson oscillators is de-
3.6 scribed by
S, ={(s) € Cr_1g:Ci€Xp T(S— 0) < Y(S) < CexXp 7(S— o)}, N = D(Nyog = 2N, + Ny_p) + 7N = Ne(t = 1)1,
(3.9

and 0<c<1,0<c;<1,c,>1. Such conditions correspond

to the situation in which the first oscillator is ready to gen- 1<k<K.  No=Np Ngwr=Ng,

erate a spikeN;(0)=1, while the second oscillator is still in whereD=e",0>0,r>1.

a refractory phase ably(0)~exp(—-70). Integrating Egs. Analytical estimations of typical dynamical regimes can

(3.5) asymptotically fort [0, 1], one findsN,(t) ~exp(7t) be obtained on the base of the method applied above. Rather

and N,(t) ~exd n(t—o)]. If o<1 the spike of the second than giving here cumbersome formulas we illustrate our con-

oscillator starts during the spike of the first one. That causeslusions by numerical simulations in the case of five oscilla-

further synchronization of the oscillators. In the caseof1  tors (K=5). Figures %a)-5(c) demonstrate three possible

the spike of the second oscillator can start only after thespiking regimes: completely synchronized, shifted phase,

spike of the first one and antiphase conditions are still validand antiphase states.

Thus the critical coupling igr;=1, which is also confirmed In Fig. 5a) one can see a synchronous solutidp(t)

by the numerical integrations. which is realized if the coupling coefficient is relatively
We leave further details of the proof for Appendix C and strong,o < ax. Here the constanty <1 depends on the total

formulate the result here. Let be the first positive root of number of oscillatorsK so thatax—0 underK—co. As

the equationN,(t)=1. Then for eachc,c; €(0,1) andc, mentioned before, oscillations are intensive and their period

= g, there is a sufficiently large for which is asymptotically large;-exp(7).
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t D. Closed chain of coupled oscillators

The dynamical behavior of coupled Hutchinson oscilla-
tors organized as a ring is described by the system

20 .
Ni=D(Ng1 = 2N+ Ni-g) + N1 = Ny (t = 1),
(3.12
1<k<K, Ny=Ng, Ngi1=No,
10 whereD=e,0>0,7>1.
In such a circuit four qualitatively different regimes are
possible. Again, the completely synchronous solufit)
. =Ny(t) is observed if the coupling coefficient is relatively

strong, o< Bx where Bx <1 depends orK so thatBx—0
a b c d e underkK — oo,

, ) , Targets appear under RK o<<1. In contrast to the open
FIG. 5. Patterns corresponding to the temporal evolution of in-cpain “in the ring each oscillator can be the central one, for
':??Zme_s 4of fh/g goulfled_%sgIlators_CfIguIatdeW'ltEh E(@;g)lfor (azj example N, has been chosen as the leader for F{g).5The
=5,7=4,0=03, (b) 7208, (¢) 0=1.6, and(d) Eas.(3.10 and o\ oo of <hikes propagate from this oscillator in both direc-
(312 and(®) 312, (3.13 for ¢=0.7. The horizontal axis is the tions and annihilate at the opposite diameter. The regime can
oscillator index (k=1,...,95, the vertical axis the time(t . . . A . .
<[0,30). The highestlowes) intensity is represented by white be realized if the_perlod of oscillations is sufficiently longer
(black domains. than the round trip time of the wave. _
In the case 2K <o<by,bx<1, there can also exist at-
tractors of the traveling wave type, as shown in Fig)5In
this case special initial conditions have been prepared in or-

O.f a shﬂfted phase undef <o<1. Spikes of_the main oS- ger to force spikes to propagate in a certain direction over the
cillator (in our caseN;) generate waves of spikes moving to circle, namely, we selfl(S)= o (S) € S, where
both ends along the chain and creating a structure that isa ' K K

one-dimensional analog of targets. The period of oscillationsS, = {¢(s) € Ci—1 q:0 < @(s) < (1 +c)exp- 7), k#i},
T, is less tharly(7) but still asymptotically long. Spikes of (3.13
the k oscillator are retarded with respect to the spike of the § = {¢(s) e Cr_y 5:0 < ¢i(s) < exlcir(ko = i)(s+ 1], i
leading oscillatok, in time by |k—ko|o. Therefores charac-

terizes the velocity of the wave. The maximal amplitude of =Ko = 1,ko,ko+ 1},

the main spike is slightly smaller than the maxima of the
spikes on the boundary. The appropriate initial conditions ar
N (S)= ¢ (s) € S, where

Figure §b) shows a wave structure formed by oscillations

and ¢;>1,c,~1 are arbitrary constants. Here, the initial
function Pryr1 corresponds to the excitory state, the functions
Phy Phy-1 provide the refractory state of oscillators, and all
S={e(s) € Cryi0< @(s) = (1 +c)exp n(s- k= ko|o)} otht_er Pri correspond to the rest states. 'I_'hen the_- wave of
excitation moves fronk, to ky+1 over the circle, doing the
(3.10  yound trip in timeT ~ Ko+0(1), which is, hence, the period
8f oscillations. The neighboring spikes are shifted with re-
Spect to each other in time byo. In the case of a long ring
circuit (large K) two-, three -, and so on spike traveling so-

andc,~1 are arbitrary constants. One can also organize th
initial conditions to give “antitargets:”

S={e9) € Cragi0< o9 < (1+cexprs— (k- 1o  lutions are also possible. A
The existence of such traveling waves in the ring is im-
+ |k = kol o]} (3.1) portant for understanding wave structures in a two-

] o ) dimensional network in which an excitation circulated per-
In this case waves periodically starting from the ends of thgnanently in closed contours can create complicated periodic
chain annihilate in the center. patterns.

In Fig. 5c) we present t_he antiphase so_lution reali;ed for |n the case of weak couplings>1, the oscillations are
relatively weak coupling withr> 1. All functionsN; having  analogous to oscillations in an open chain and produce cell-
odd indices generate spikes almost at the same time; thge zigzag structures. The spikes of neighboring oscillators
duration of the spikes is close to 1. At a tine+O(7*?)  follow each other in a time-o-. If K is odd the structures are
later the functions of the even numbers begin to grow, etCrather regu|ar because Oddver) oscillators are Synchro_
The basic characteristics 8§ (t) do not depend ok: nized. If K is even, then more complicated patterns can be

observed.
T=20+0(1), Npa=exp 11+0(1)],

E. Two-dimensional network
Nmin=€exd-c7], c¢>0.

The conclusions made above on the dynamics of chains
Such solutions zigzag most over the “spatial” varigdblend  can be expanded to the case of a two-dimensional network
correspond to a stable cell-like structure. described by
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: a b
Nij = NG[1 =N (t=D]+D X (Np= Ny, I
(m,k)eZi,j s @
(3.19 :
whereD=€"",0>0,7>1,i,] characterize the plane coor- s . @ <
dinates of the oscillator, and ; is the set of coordinates of
the nearest, say, six, cells. L !
In such a network, a spontaneous spike ofkheoscilla- . d

tor att=0 induces spikes of the nearesf oscillators att T T
~ . They initiate, in turn, spikes of all neighboring oscilla-

tors excepting, howevely;;, and so on. Thus, a wave of
spikes is created and moves to the boundary of the region. 41 L i
The collision of two waves results in their annihilation. That

is why the final structures depend essentially on the initial
states of the oscillators. The number of attractors is
enormous.

In the case of &£ o<1, the wave process described may FIG. 6. Creation and evolution of target centées, (b) and
be reproduced by the cellular automaton introduced in thepirals(c), (d) in the cellular automaton. In the beginnifig-0 (a),
following. In a discretized timd each cell can take discrete (c) all cells are in the rest state=0 excepting cells in the excitable
states numberet!, 2, ... m,0 where 0 means the rest state in states=1 (black dotg and refractory cells of state=2 (white dots.
which a cell is ready to respond to an incoming influence byb).(d) Further evolution of the wave front at=10 is marked by
a spike, the state 1 corresponds to the spike of the cell, arflack dots(states=1). Period of self-excitatio =25.
the states 2, ..m correspond to the refractory phase when
the cell does not respond to an external force. It follows froms=0. One can then observe the creation and evolution of
the previous consideration that the duration of the refractoryargets of different periods.
statem can be estimated fronm=[(t;+1)/o] where [-] Figure 7 demonstrates analogous targets to those realized
means one integer part, ang=1+0(1) is the duration of a in the diffusion systen{1.2) with similar initial conditions.
spike. The period of delay-induced excitation of a solitary The larger wavelength in Figs.(@)-7(f) is mainly deter-
cell is M=[exp(7)/(7o)]. Here r>1 is supposed, and hence Mined by the properties of a single oscillator; hence, the
M>m. Once a cell has passed the last staié waits in the ~ Period is of the order of-exp(), whereas the small period
state 0 until the moment when another cell of state 1 appeafsigs. 1@-7(c) is determined by the coupling strength.
among the neighbors dM_m) time Steps pass. Then its Let the initial front (S= 1) in the automaton be the line
state changes again as1,2,... m,0. segment that touches the boundary, and similar segments in

Such an approach looks rough but it allows us to effi-the refractory stats=2 are located one step beldabovs,
ciently simulate pattern formation and to determine the ini-2s shown in Fig. &). All other oscillators are in the state
tial conditions leading to different structures. In general, the=0- When time passes the waves twist around their free ends
simple rules given above can be specified, as many authors
did, for instance, to take into account dispersion in reaction-
diffusion processe$24] or to investigate cooperative phe-
nomena in laser dynamid25]. We note, in addition, that
contrary to manyaxiomaticmodels our automaton is reason-
ably determined and its main quantitative characteristics, th
speed of wavesr and the duration of the refractory state
have been derived. Excitory, refractory, or rest states of a cel
in the system(3.14) can be prepared by choosing the initial
functions in the way described in Sec. Ill D. Hence under
large enoughr we expect a good correspondence between
the dynamics of the automata and the netw@kl4), al-
though the correspondence to the dynamics of the continuou °
system(1.2) is not evident.

To reproduce structures related to solutions of the para
bolic boundary problen{1.2) we take two types of initial
conditions. Figure 6 is obtained for automata containing 50
x50 cells. In these figures, full points determine excited F|G. 7. Targets as solution of the partial differential equation

spike statess=1; the duration of the refractory phasens  (PDE) (2.1) with delay==0.5.(a)~(c) show short wavelength pat-
=5. The initial conditions have been chosen as a few arbiterns obtained if the central point is fixed for all time M Ng;.

trarily placed excited oscillators of stage=1 and pairs of Long wavelength pattern@)—f) evolve if N=Ng only att=0 (see
statess=1,2, while all other oscillators are in the rest state text).

(@ t= 52
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FIG. 9. Memory effect in the cellular automaton. White dots
mark the front of the wavegstates=1). At the initial moment(a)
T=0 some of the excitable poinss=1 are included into the closed
contour which consists of(m+1) cells (r intege), m=2, in the
consecutive states, 2,0, andform the image “T.” Period of self-
excitationM =25. (b) Pattern aff=5. (¢) Finally, atT=34 a number
of spirals and “T” appearing with the periddh+1) survive.

can be associated with a dynamical image memory. This

problem is under intensive permanent investigati@r$ and

from this point of view we remark that in many aspects the

behavior of the Hutchinson oscillator is similar to the behav-

ior of a formal oscillating neuron hence, the systerl4)

can be proposed to model and study coupled neurons. For

biological neural networks, however, multidimensional diffu-

sion problems are more natural, as each neuron, is influenced
FIG. 8. One, two, and four-arm spirals from POE1). The DYy hundreds or thousands of other neurons and, in turn, con-

initial conditions are chosen in a similar way as those in Fig) 6 trols the same number of neurons. At the same time we note

(see text that solutions of traveling wave type can also be observed in
_ ) _ _ systems of globally couple@ll to all) oscillators; in particu-
and evolve into single or double spirals, Figdp lar, attractors called “splay states” have been obtained in cir-

Figures 8a)—8§(i) represent spirals in the diffusion system ¢its of Josephson junctiorf€8] or in the dynamics of a
(2.1). Here, we used initial conditions similar to those in Fig. myitimode solid-state lasg29].

6(c). In Fig. §@a) the line segment was chosen according to
Egs. (3.13 with N(xg,y,t)=exp0.67) for —r<t<0 and O
<y=<L/2, whereas neighbors were put Btx,*dX,y,t)
=exd +(1.5t+7)]. As a result, the segment is forced to move  We considered pattern formation in a system with diffu-
in the negativex direction; its free end in the center of the sion and delay, which can be encountered in many fields
domain twists and forms @ne-armeg spiral. In this way it such as population dynamics, biology, mechanical engineer-
is also possible to get coexisting reverberators as well aig, or physics. Due to the interplay of these processes, very
spirals with an arbitrary number of arms using an initial con-complicated structures can arise, such as spiral waves and
figuration of the form of Fig. &) [see Figs. &)-8(i)]. Inthe  space-time turbulence. It has been shown previo(isB}
long time limit only the one-armed spiral seems to survivethat steady inhomogeneous regimes in diffusion dominated
but the decay time of multiarmed spirals increases essentiallyystems without delay can exist only if the size of the area is
with increasing time delay. sufficiently large and, additionally, is of a complex geometry,
By synthesizing the initial conditions one can study thein particular, is not convex. In a simple region, multicompo-
evolution of complicated patternf26]. In particular, the nent systems governed by two or more parabolic equations
wave circulation along a ring discussed in Sec. Ill D canare necessary to observe complex structures in space and
create a target without the leading oscillator in the two-time. Thus it is a delay that already induces in a natural way
dimensional network. It is also possible to construct a morea rich variety of patterns in the single-species diffusion
complex front, say in the form of the letter “T” as shown in equation.
Fig. 9. At the initial momen® =0, the image was formed by Our work rigorously relates the diffusion chaos already
excitable pointgs=1) of a closed contour which consists of found in a partial differential delay equation, namely, the
r(m+1) cells (r integeh, in the consecutive states diffusive Hutchinson equation, at threshold with the well-
1,2,3,...m,0, and we put this contour on a random back-known Benjamin-Feir instability in the complex Ginzburg-
ground. Finally, in Fig. &), a number of spirals and periodi- Landau equation.
cally appearing “T"[5] survive. It turned out that the complex Ginzburg-Landau equation
It would be interesting to realize such wave structures inserves as a normal form valid near the first bifurcation of the
the continuous systeid.2), which we leave for future work. Hutchinson equation. To describe patterns well above thresh-
The existence of contours providing circulation of excitationold, higher order terms in the Ginzburg-Landau equation are
and, as a consequence, periodic attractors of complex formmvolved. However, this approach is not really sufficient be-

IV. CONCLUSION
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cause far from threshold oscillations are transformed into o —eXp=iwgT)
strongly nonlinear spikes, for which the amplitude of the Upp=¢
second harmonic of Fourier expansion is of the same order as

the first one. Hence the inclusion of nonresonant nonlinear

terms that break the symmetry of the phase in the complex

i2a)o + eXF(— i2(,007'0) '

reX[Z(— inTO) + eXF(_ i2(1)07'0)

U33= — Uyr& B -
Ginzburg-Landau equation might be necessary, as it may % 22 i3wg + exp(— i3w)
turn a stable limit cycle into a spike solutid80,31. The X
temporal behavior of(t) obeying Ugo = — Upplp ] €XP(— 120070) + expli2wg )],
- ; 2_1¢2
aé=(e+iw)E+ag - |€%¢ (4.) _ - expliwgmy) + expl= i3wyry)
shows spikes for certain values of the paramegeasde. If Uaz = = Usaf i2wg + eXp(— i 2wq 7o)
diffusion is added, target patterns and spirals can be found in 3/ ! . . .
two spatial dimensiong32)]. At the orders®< we find the equation for the main amplitude
Another explanation of patterns observed far away fromé*
threshold is given by constructing a cellular automaton. The 9

algorithm and quantitive characteristics are based on the anatl + Tﬁ)a; =(1-im)Aé+ (1 -irg)é — £¢3m0- 1 +i(3
lytical investigations of the dynamics of coupled delayed os-

cillators. Cells can be excited spontaneously or by the influ- X3
ence of other cells and generate spikes. After the spike, the + 70)1/5, Ix
cell recovers its properties during a long refractory period.

This behavior is well known from excitable media and canWith the rescaled time variable
explain the spiral waves of a mobile population living in a s= &1+
homogeneous environment. The obtained analytical estima-

tions also explain the dramatic character of oscillations of armand amplitude
isolated population as it decreases in minima to superexpo- 12
nentially small values. The same is valid for the synchro- ¢ — &(Bm-1/5)

nized regime in coupled populations if the coupling is largerthe equation is transformed to the standard f¢2i6) of a
than expg-7). In the case of relatively weak coupling, we complex Ginzburg-Landau equation.

demonstrate various types of phase synchronization, result-

ing in the essential growth of the average population and APPENDIX B

improving living conditions. The method of asymptotic integration described below
Phase synchronization also relates to processes of pattepadrmits one to obtain uniform asymptotic formulas for

formation. The advantages of the analytical method appliegteady-state regimes with any degree of accuracy, but we

are that we can approximate the speed of waves in the digestrict ourselves to the leading terms of the solutions.

crete network, the duration of the refractory phase, and initial | et us denote the sequential positive time moments when

conditions leading to the development of different structuresy(t)=1 by to,t;,... sothatty,t,, ... tx,... aremoments of

In this way it is possible to get on demand various structureghe onset of spikes while,ts, ... toe1, ... aremoments of

like targets, multiarm spirals, or traveling waves in a one-he cessation of spikes. We chodge0 and the initial con-

component system with local delayed feedback. Similar augitions from the setS, given by Eq. (3.3, N(S)=(s),

towaves arise in chemical multicomponent oscillatory réacyc[-1,0]. Under these conditions one can integrate Eq.
tions, heart pacemaker cells, laser light generation(3_2) and get

oscillatory neural networks, etg33-37 Thus, the imitation
of complex phenomena in various autowave media is one of Nt =exgst-e™[1+0(1)], te[0,1]. (B

fthe possu_ole fascinating applications of the diffusive Hutch-.l_he solution increases up to the maximuiy,=N(1)
inson oscillator.

=e™ Y 1+0(1)] at the end of this interval. During the next
interval te[1,2] the solution decreases monotonically as
ACKNOWLEDGMENTS N <0 becaus&(t—1)> 1. Replacing\N(t—1) by the function

This research has been supported by the INTAS, GrarfB1) and integrating Eq(3.2) at this interval we find
No. 00-867, and the German Academic Exchange Service, _erlt-2

¢

X | y=0 X

x=1

— )_ CH
DAAD Grant No. A/03/06768. N(t) = exp(7t + eTe e 1+ tel1,2],
(B2)
APPENDIX A from which we estimate the moment
Inserting the serie€.4),(2.5) into the equation for devia- t=1 +In_r ‘o In 7 (B3)
tion z(x,t) and collecting terms of the same ordeone finds 1= T pe

the slowly varying functionsi;: . .
y vaning b whenN(t;)=1. The solution decreases further in accordance

Uop = O, with

026202-10



SPATIOTEMPORAL STRUCTURES IN A MODEL WITH. PHYSICAL REVIEW E 70, 026202(2004)

-2

N(t) = exp{t - 1+eTe® "~ - 1][1+0(1))], Ny +Np < (€7 + 7)(Ny + Ny).

(B4) Taking into account the initial condition8.6) one can then

te[2,1+t]}, estimate

up to the minimum at=t;+1:

N(1 +t;) =Npin=exd27+In 71— €7 = exp{- €1 +0(1)]}.

N;<[1l+c+o(1)]e",

t

(BS) N, < N,(0)e™ + "t f N,(s)e ™ds,
From this moment the solution increases monotonically as 0
N(t-1)=0(1); hence which leads us to the final stateme@2), (C3).
N() = N(1 +t,)e 2 To[1+00] = oy 7t — 7— 7). Now we improve the estimations in separate steps.
() =N J Xp( 7€) (B6) Lemma 2Lette[0,1]; then the inequalities
tell+t,t,]. N, (t) = e™2, (Cq
At the moment
N,(t) = ¢,(1 - c)e™ (CH)
eT
t,=—[1+0(1)], (B7)  are valid. They follow from Eqs(C1) in which we taken

T =0, drop the secongpositive) term, and take into account

the population again reaches unigft,) =1, and the problem the formulagC2), (C3).
of further constructing the solution is returned to the original Lemma 3Lette[1,2]; then we have the estimation
problem becaushl(t,+s) € §,se[-1,0]. 2 Hieer

Finally, let us introduce the operator of the shifting along Na(t) = ¢y(1 - )%™, (o)
the trajectorieslI(¢(s))=(N(t,+s)),se[-1,0], and a set To prove this lemma we use E¢C1) in which we takezn
S(a):(s): p(1)=1,0< y{(s) < a€® which is wider tharS,. It =1, drop the second positive term, and apply the inequality
is possible to show thallS(a) CS,. The existence of the (C3).

stable periodical spiking solution of E¢8.2) is thus proved. Lemma 4 Lette[1+45,2] whered is an arbitrary suffi-
ciently small constant independent of largdn this interval
APPENDIX C the inequality
To prove the existence of antiphase oscillations we formu- N, () < e71-20) (C7)

late five lemmas representing the asymptotic estimation of
solutions for the initial condition€3.6). Here we restrict our- is valid. To prove the lemma we consider the formal solution
selves to the simplest case> 2, but the method can also be (C1) with »=1 and use the estimations obtained above for
applied to the case ofd o< 2. the functionsN;(s—1) andN,(s) on the right-hand side.

For calculations we need the formal solutions of the sys- Lemma 5Lette[2,0+4]; then the estimations

tem (3.5),
Ni(t) < N,(2)(t—2)exp H(t—2—0) +exprt—1 - 20),

t
Ni(t) = Ni(n)expl(f— e (t-7) -7 f Ni(s— l)ds} (C8)
7
t t No(t) =c(r)exp (t — o)[1 +O(exp (- 79))], (C9)
+e J Nk#(s)exp{(r— e)(t-9) -7 f NE here
-0)l<c(n <
—1)d§}ds ik=1,2. (C1) all-oi=dn =
are valid.

' . L . . The existence of the valug=c+0(1) follows immedi-
The first lemma gives the upper estimation of the solutions in . .

. oo ately from Lemma 5. Also, it follows from the above esti-
a sufficiently long time interval.

Lemma 1lLette[0,20+1]; then the inequalities mates that the inequalities
7S
Nl < zeﬁ' (CZ) N2(S+ tl) = (1 + C)e ’

C,€" ) < Ny(s+t) < ge™?, se[-1,0],
- - (C10
are valid in the case of sufficiently large To prove the

lemma we note that for any time interval it is evidently valid are valid for every fixed & c,c; <1,c,> o. Thus inclusions
that (3.7) are valid and an antiphase solution exists.

NZ = CoeT(t_”), Co=Cr+ 2(20' + 1) (C3)
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